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A hyperbolic well-posed model for the flow of granular materials
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Abstract. A plasticity model for the flow of granular materials is presented which is derived from a physically
based kinematic rule and which is closely related to the double-shearing model, the double-sliding free-rotating
model and also to the plastic-potential model. All of these models incorporate various notions of the concept of
rotation-rate and the crucial idea behind the model presented here is that it identifies this rotation-rate with a
property associated with a Cosserat continuum, namely, the intrinsic spin. As a consequence of this identification,
the stress tensor may become asymmetric. For simplicity, in the analysis presented here, the material parameters
are assumed to be constant. The central results of the paper are that (a) the model is hyperbolic for two-dimen-
sional steady-state flows in the inertial regime and (b) the model possesses a domain of linear well-posedness.
Specifically, it is proved that incompressible flows are well-posed.
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1. Introduction

The last 10 to 15 years have seen a rapid increase in research effort into the study of granular
materials. Such materials, and systems involving them, exhibit complex and interesting behav-
iour. Civil engineers have long had a need to model soils, in which the densely packed grains,
with liquid and gas occupying the interstices, exhibit solid-like behaviour, while chemical engi-
neers have needed to model fluid suspensions, liquid and gas, in which granular material is
dispersed in the fluid. In recent years, these traditional areas involving practical engineering
problems, have attracted the attention of physicists, who have developed an interest in such
systems both to understand their fundamental behaviour and also for the purpose of analogy
when investigating other complex systems. In addition to this, many industries (for example,
the chemical and food industries) handle granular solids and both storage and bulk flow give
rise to problems which have a direct adverse economic effect. One method of trying to solve
these problems is by way of obtaining a better theoretical understanding of the underlying
principles of the physics and mechanics of granular materials.

In this paper we shall consider a mass of granular material occupying a region of space
and undergoing a flow or deformation. The grains are assumed to be densely packed, i.e.,
each grain is in contact with several of its neighbours and contact with a neighbouring grain
is of finite duration and non-impulsive (i.e., contact between grains is not modelled as instan-
taneous impact). The kinematics of such systems have been remarkably resistant to success-
ful mathematical modelling. There are a number of different types of models which may be
summarised as (1) discrete, (2) statistical mechanical and (3) continuum, in which the first
and third appear to be more appropriate for the very densely packed systems considered here.
The statistical–mechanical theories are associated with the work of Jenkins, see for example
[1]. Despite the popularity of discrete modelling based upon Newtonian mechanics in which
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the grains are modelled as small bodies and in which grain interactions may be modelled by
including frictional, elastic and viscous effects in various ways, for large-scale systems comput-
ing power is still not adequate to solve those boundary- and initial-value problems of practi-
cal interest. For large systems the convenience of a continuum approach is a tempting goal,
even though granular systems may appear to be at the borderline, or even beyond, that at
which a continuum model may be considered applicable. Continuum models are also a use-
ful framework within which to propose simple theories which may capture some aspect of
the behaviour of the real material. And herein lies the problem: no continuum model has
gained wide acceptance for its applicability to granular materials. Geotechnical and civil engi-
neers usually use the so-called plastic-potential model, in which a yield condition (an alge-
braic inequality satisfied by the stress components) is assumed to hold in conjunction with the
stress equilibrium equations and the strain increment or deformation-rate tensor is obtained
by differentiation of the plastic potential with respect to the components of stress. If the yield
condition and plastic potential are determined from the same function, the flow rule is called
associated, otherwise it is called non-associated. Such plasticity models are now almost uni-
versal in soil mechanics; see for example the classic paper by Drucker and Prager [2], or,
for a realistic plastic potential based upon careful experimentation, see [3], but they have not
been adopted by researchers in any other field. It should be noted that there are dissenting
voices even in geotechnical engineering, in particular there have been significant contributions
due to G. Gudehus [4] and D. Kolymbas in the development of hypoplastic models; see [5].
An alternative class of models has been based directly upon physical arguments concerning
the manner of flow of granular materials, but these again have not found widespread accep-
tance, finding support mainly from applied mathematicians. Historically, chemical engineers
have studied systems in which the grains are in suspension, either in liquid or in a gas, and
have thus treated the problem as one of fluid mechanics or rheology. Recently, physicists have
conducted experiments on small-scale systems and are attempting to construct new types of
model for such systems. It is also becoming more and more common to conduct computer
simulations in lieu of performing real experiments and although there is something to be said
in favour of such simulations, there is a danger that the distinction between simulation results
and the results of real experiments is becoming blurred, particularly in view of the current
fashion of referring to simulations as experiments! Discrete models, and the attendant simu-
lations, have proponents in all disciplines, a key reference here is the classic paper by Cundall
and Strack [6].

In this paper we wish to consider a unified plasticity theory based upon physical argu-
ments. Such theories have had a number of theoretical problems associated with them, of
which perhaps the most important is the loss of hyperbolicity and ill-posedness. Perhaps this
latter term requires some explanation. The traditional definition of a well-posed problem is
that it is one for which the solution exists, is unique and depends continuously on the bound-
ary and initial data. An ill-posed problem, then, is merely the negation of this, one in which
at least one of the above conditions fails to hold. Understood in this way, the phrase ill-posed
problem can mean any one of a number of things, and in this sense is imprecise and not itself
well (i.e., uniquely) defined. However, we shall use the term in the following specific way. A
set of partial differential equations is linearly ill-posed with respect to initial conditions if,
given a solution to the initial-value problem, a sinusoidal perturbation of the given solution
grows without bound in the limit of vanishingly short wavelengths. The basic facts concerning
ill-posedness with regard to the models of granular materials were established in a num-
ber of important papers by Schaeffer and co-workers, [7–9], in which the method of frozen
coefficients was used; see also, for a related paper, [10]. The implementation of the method
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of frozen coefficients used here is based upon that used in [11]. It may happen that the
mathematical ill-posedness reflects some strong physical instability and in such a case the ill-
posedness may be acceptable. But in the absence of a strong physical instability it seems more
likely that equations admitting such a strong mathematical instability cannot be an accept-
able mathematical model of the physical process. In this case we must look to some prop-
erty in the physics or the mechanics of the problem that will regularise the equations. In the
case of granular materials there appears to be no consensus as to whether ill-posed equa-
tions form an acceptable model. On the one hand, there is reluctance among many research-
ers to accept ill-posed theories, on the other hand the fact that granular materials do exhibit
unstable behaviour gives credence to the possibility that they be modelled in some sense by
an ill-posed theory. There also appear to be many researchers, particularly those working on
quasi-static problems, who are oblivious to, or even ignore, the fact that the model they work
with is ill-posed.

We shall construct a theory which incorporates the following physical properties and attri-
butes. We regard these as the minimum necessary requirements to construct an acceptable the-
ory from the point of view of both theoretical and physical properties. These are:
(a) a pressure-dependent yield condition which introduces the concept of internal friction

and frictionally generated resistive stresses. A yield condition is an essential part of many
plasticity models and seems well-founded physically, taking an analogy with the Cou-
lomb law of dry friction from Newtonian particle and rigid-body mechanics;

(b) packed discrete grains that may deform, but certainly cannot overlap, can only flow by
one grain overtaking another or by being overtaken, and this suggests that the basic con-
tinuum deformation is by shear;

(c) the impenetrability condition for the grains means that the grains have to re-arrange
themselves, riding up and down over each other, to flow past one another. This rear-
rangement gives rise to dilatation, i.e., to volume and bulk density changes;

(d) individual grains may rotate and the rotations combine to affect the macroscopic flow.
This gives rise to a continuum rate of rotation phenomenon distinct from that of the
anti-symmetric part of the velocity-gradient tensor (or vorticity).

Whether or not the above conditions are sufficient for a workable continuum model for
granular materials is an open question but they appear all to be necessary for a complete
theory capable of explaining sufficient physical facts. We regard the ill-posedness of the plas-
tic-potential model as a sign that anything less is insufficient. The ill-posedness of the double-
shearing model is due to the choice of the rate of rotation of the principal axes of stress as
a measure of the rate of rotation described in (d). In this paper we replace this quantity by a
physical angular velocity (intrinsic spin), a primitive kinematic quantity that has a rotational
inertia and stress associated with it: the stress tensor, in general, may be non-symmetric.

As mentioned above, it is sometimes stated that ill-posedness of the governing equations
is merely a reflection of the unstable nature of granular flow. But there has, as yet, been no
convincing demonstration that the mathematical ill-posedness is associated with a particular
physical instability. The nature of the ill-posedness is too strong, too all-pervading to be a
reflection, say, of the growth of a single shear-band. In the authors’ opinion, a more likely
hypothesis is that the models are mathematically ill-posed due to a missing or incorrect phys-
ical law or attribute or due to the various physical laws being combined in an inconsistent
way. We have stated above the physical properties that we wish to introduce into the model;
all that remains is to express these laws in such a manner, and in such a combination, that
the model is well-posed.
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It is, perhaps, necessary to emphasise the following point. Plasticity models are mainly
used in the quasi-static regime. But for an ill-posed plasticity model there is, strictly speaking,
no such thing as a quasi-static regime. The inertia terms may be negligible in many practical
problems, but they are not identically zero. For an ill-posed model, no matter how infinitesi-
mally small the inertia terms are, they will grow increasingly large with time. For this reason,
in this paper, where we demonstrate that our plasticity model is well-posed, it is essential that
we retain the inertia terms in both the translational and rotational equations of motion.

Since no model within the confines of classical continuum mechanics has found general
acceptance, the possibility must be faced that perhaps no such model exists. Indeed, many
researchers have turned to the framework of a Cosserat continuum in order to regularise
the equations, see for example [12]. However, such models are greatly complicated in com-
parison to standard models due to the presence of couple-stress. Further, the standard plas-
tic-potential model and the double-shearing model both appear to capture successfully some
aspects of the behaviour of granular materials. In this paper we wish to preserve as much
as possible the relative simplicity of these latter models and hence wish to use a framework
which extends the classical continuum as little as possible and to obtain equations as simi-
lar as possible to the plastic-potential and double-shearing models. As far as the authors are
aware there is no conclusive experimental evidence for the existence of couple stress in granu-
lar materials and its introduction greatly complicates the equations. Moreover, the existence of
grain rotation in granular materials is very much self-evident and yet researchers seem to have
overlooked the possibility that incorporating some measure of grain rotation may itself be
sufficient to both regularise the equations and to produce a model capable of explaining the
major features of the bulk flow of granular materials. For this reason we introduce a Cosserat
continuum in which there is no couple-stress but there is both rotation and rotational inertia
and refer to this as a reduced Cosserat continuum.

For simplicity we shall consider a perfectly plastic model, i.e., one in which the material
parameters are constants and the conclusions presented here have been proved in this context.
But it should be pointed out that the model may easily be extended to include density-hard-
ening or softening, or indeed any other type of hardening or softening. In fact, since the
material cannot undergo dilatation indefinitely, it is necessary for the parameter governing
dilatation to reduce in magnitude to zero as the deformation or flow proceeds in order to
obtain a realistic model. In this paper we shall ultimately avoid the question of the evolu-
tion of dilatancy and its effect on well-posedness by considering the important special case
of incompressible flows.

2. The mathematical model

Consider a body B comprising a mass of granular material occupying a region R at time
t in three-dimensional space and let F denote an inertial frame from which to observe B. In
the standard continuum model, the following field variables are defined at each spatial point
P of R. Relative to F , let v, σ, ρ denote the velocity, Cauchy stress and bulk density of the
granular material at the material point of B instantaneously occupying the point P . We shall
consider an enhanced continuum model, a type of Cosserat continuum, in which what is usu-
ally termed a material particle, in addition to the above, also possesses some of the attributes
of a rigid body, namely an intrinsic spin ω and a moment of inertia I, and for this reason is
referred to as a material-point body. A standard Cosserat continuum possesses a further phys-
ical quantity, namely the couple-stress. However, couple-stress will not appear in our equa-
tions and so we refrain from introducing it into our continuum, and for this reason we call



A hyperbolic well-posed model for the flow of granular materials 111

it a reduced Cosserat continuum. The quantity ω is an extra field variable and I represents
a material property. As a result of their introduction the stress tensor will not, in general, be
symmetric. In order to give an intuitive meaning to ω and I, we may note that I is a sec-
ond-order symmetric tensor and, as such, there exist three mutually perpendicular directions
(which will not be unique if the principal values of inertia are not distinct) relative to which
the matrix representation of I is diagonal. This triad of directions is fixed in the material-
point body. During the deformation or flow the orientation of this triad will, in general, vary
and ω is the spin or angular velocity of this triad.

In this paper we shall restrict consideration to planar flows of B. Let � denote the veloc-
ity-gradient tensor with components defined by

�ij = ∂vi

∂xj
(1)

and define the deformation-rate tensor, d, and the spin tensor, s, with components

dij = 1
2

(
�ij +�ji

)
, sij = 1

2

(
�ij −�ji

)
(2)

as its symmetric and anti-symmetric parts, respectively. Let Oxi , Ox′
i denote two sets of rect-

angular Cartesian co-ordinate axes, in the plane of flow, with the latter inclined at an angle
ϑ (measured anti-clockwise positive) to the former and denote the components of σ by σij ,
σ ′
ij relative to each set of axes, respectively, where the subscripts take the values 1 and 2. The

stress components transform as

σ ′
11 = 1

2 [σ11 +σ22 + (σ11 −σ22) cos 2ϑ+ (σ21 +σ12) sin 2ϑ ] ,

σ ′
12 = 1

2 [σ12 −σ21 − (σ11 −σ22) sin 2ϑ+ (σ21 +σ12) cos 2ϑ ] ,

σ ′
21 = 1

2 [σ21 −σ12 − (σ11 −σ22) sin 2ϑ+ (σ21 +σ12) cos 2ϑ ] ,

σ ′
22 = 1

2 [σ11 +σ22 − (σ11 −σ22) cos 2ϑ− (σ21 +σ12) sin 2ϑ ] .

(3)

It is convenient to define the invariant quantities

pσ =− 1
2 (σ11 +σ22) , rσ = 1

2 (σ12 −σ21) , qσ = 1
2

[
(σ11 −σ22)

2 + (σ21 +σ12)
2
]1/2

(4)

and to define ψσ , the angle that the greater principal direction of the symmetric part of the
stress makes with the x1-axis, by

tan 2ψσ = σ21 +σ12

σ11 −σ22
(5)

and then

σ11 =−pσ +qσ cos 2ψσ , σ22 =−pσ −qσ cos 2ψσ ,

σ12 = rσ +qσ sin 2ψσ , σ21 =−rσ +qσ sin 2ψσ .
(6)

2.1. The stress equations of motion

Let ∂t , ∂i denote partial differentiation with respect to time t , xi , i = 1,2, respectively; then
the stress equations of motion are

ρ∂tv1 +ρv1∂1v1 +ρv2∂2v1 − ∂1σ11 − ∂2σ21 −ρF1 =0,

ρ∂tv2 +ρv1∂1v2 +ρv2∂2v2 − ∂1σ12 − ∂2σ22 −ρF2 =0,
(7)
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where F1,F2 denote the components of the body force per unit mass. From Equations (4) and
(7) we obtain

ρ∂tv1 +ρv1∂1v1 +ρv2∂2v1 + ∂1pσ − cos 2ψσ∂1qσ +2qσ sin 2ψσ∂1ψσ

+∂2rσ − ∂2qσ sin 2ψσ −2qσ cos 2ψσ∂2ψσ −ρF1 =0,

ρ∂tv2 +ρv1∂1v2 +ρv2∂2v2 − ∂1rσ − sin 2ψσ∂1qσ −2qσ cos 2ψσ∂1ψσ

+∂2pσ + ∂2qσ cos 2ψσ −2qσ sin 2ψσ∂2ψσ −ρF2 =0.

(8)

The equation of rotational motion for a reduced Cosserat continuum may be written

ρI (∂tω+v1∂1ω+v2∂2ω)+ρ (∂t I +v1∂1I +v2∂2I )ω−2rσ −ρG=0, (9)

where G is the body moment per unit mass. In this paper we assume that the moment-of-
inertia tensor I is prescribed. At each point P , it represents, effectively, the moment of inertia
of a representative volume element in the real material. A lower bound for this volume is the
volume occupied by a single grain, but, in general, it will be a mesoscopic domain containing
several grains and the attendant void space. In a standard Cosserat continuum, the equation
of rotational motion would also contain the couple-stress.

The constitutive equation must be such as to allow the possibility of a non-symmetric state
of stress. In this paper our intention is to propose a theory which is as similar as possible to
standard plasticity models. Here, we shall adopt the simplest method of incorporating a possi-
bly asymmetric stress tensor into the theory, namely, we shall assume that the symmetric and
anti-symmetric parts of the stress may be treated separately, i.e., they are independent of each
other. We shall assume that the symmetric part of the stress satisfies a yield condition of the
form

f (pσ , qσ , ρ)≤0, (10)

where the function f is such that an angle of internal friction

sinφ=−fp/fq (11)

may be defined, and where subscripts p, q indicate partial differentiation with respect to pσ ,
qσ , respectively. The simplest and most important yield condition of this type is the Mohr–
Coulomb criterion, where if τ sn denotes the tangential traction associated with the symmetric
part of the stress; then

∣∣τ sn
∣∣≤−σn tanφ+k, (12)

where σn denotes the normal component of traction across a surface with normal direction
n and φ, k denote the angle of internal friction and cohesion, respectively. In invariant form
the Coulomb yield condition may be written

qσ ≤pσ sinφ+k cosφ. (13)

In addition, we introduce a rotational yield condition of the form

|rσ |≤m, (14)

where m>0 is a material parameter, which we will call the rotational yield strength. We shall
regard m as a new material parameter, independent of both φ and k. Note that (14) is not
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differentiable at rσ =0. It is possible for the stress tensor to be symmetric, rσ =0, and so we
incorporate this case together with the case of equality in the inequality (14) by writing

rσ = εm, (15)

where ε may take one of the values +1,0,−1 according as to whether rσ is positive, zero or
negative. Introducing a rotational yield condition in a rigid–plastic context brings with it the
usual problem of indeterminacy, albeit in a slightly altered form. In classical plasticity the
stress is indeterminate in the so-called rigid region, i.e., in the region where f (pσ , qσ , ρ) <
0. In the case of a rotational yield condition, the asymmetric part of the stress is zero
in the rotationally quasi-static regime. Whereas the linear momentum equations involve the
divergence of the stress, allowing a multiplicity of solutions to the equilibrium equations, the
balance of angular momentum involves the asymmetric stress directly, so a rotationally quasi-
static flow leads to a symmetric stress tensor and to an indeterminacy, up to a constant, in
the intrinsic spin field and hence also in the velocity field. We may call this the de Josselin
de Jong indeterminacy, since it was first discovered by him in his double-sliding free-rotating
model, [13]. The indeterminacy is removed in cases where there is a boundary condition to be
satisfied by ω, or if physical arguments may be deployed to show that ω= 0. An alternative
way to remove the indeterminacy is to include rotational elasticity (presumably in the context
of a full elastic-plastic model for the symmetric part of the stress as well) or by using rota-
tional viscosity instead of the rotational yield condition. We will not pursue this idea in this
paper and shall consider only the case of a rotational yield condition. Also, we wish to con-
struct a generalisation of classical plasticity that is well-posed, but which is as similar to the
classical case as possible, so we shall concentrate here on regions in which the translational
yield condition is satisfied. Thus, the following regions are considered:
1. the indeterminate region Ri , where one or both of qσ < pσ sinφ + k cosφ and rσ �= εm

hold;
2. the fully deforming region Rd , where qσ =pσ sinφ+k cosφ and rσ = εm.

Henceforth in this paper we shall consider only the region Rd . In this region we may elim-
inate qσ , rσ from the stress equations of motion using the yield conditions (13) and (14) with
equality holding, to obtain the equations

ρ∂tv1 +ρv1∂1v1 +ρv2∂2v1 + (1− sinφ cos 2ψσ ) ∂1pσ − sinφ sin 2ψσ∂2pσ

+2qσ sin 2ψσ∂1ψσ −2qσ cos 2ψσ∂2ψσ −ρF1 =0,
(16)

ρ∂tv2 +ρv1∂1v2 +ρv2∂2v2 − sinφ sin 2ψσ∂1pσ + (1+ sinφ cos 2ψσ ) ∂2pσ

−2qσ cos 2ψσ∂1ψσ −2qσ sin 2ψσ∂2ψσ −ρF2 =0.
(17)

Also, the continuity equation governing the evolution of the bulk density reads

∂tρ+v1∂1ρ+v2∂2ρ+ρ∂1v1 +ρ∂2v2 =0. (18)

3. The kinematic equations

In this section we derive a pair of kinematic equations governing the flow of the ideal mate-
rial, which are formally identical to the double-shearing equations due to Spencer [14] for
incompressible materials and extended by Mehrabadi and Cowin [15] to dilatant materials.
See also [16] for further developments of the model. The double-sliding free-rotating model,
[17], was also extended to dilatant materials in a similar way to that of Mehrabadi and Cowin
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[15]. However, one quantity occurring in the equations is here given a different interpretation
to the above models. For a unified derivation of the double-shearing, double-sliding free-rotat-
ing and plastic-potential models, see [18]. It should be noted that single-shearing models have
also been proposed; see for example [19–21], but it is difficult with such models to admit a
sufficiently wide variety of flows. The derivation of the kinematic equations governing the flow
for the model presented here is based on that of Harris [18].

Define the quantity ε by

ε=π/4+φ/2; (19)

then at each point of Rd , i.e., the region in which the Coulomb yield condition is satisfied,
it is well known that the inequality (12) is satisfied across line segments directed at angles
of ψσ + ε, ψσ − ε to the x1-axis. We shall refer to these two directions, symmetric on either
side of the major principal stress direction, as the α1- and α2-directions, respectively, or as the
Coulomb yield directions associated with the inequality (12). Let tαi denote a unit vector in
the αi-direction.

We shall also define a second pair of (non-coincident) directions which characterise the
dilatancy of the material and which make angles of ψσ − ε+ ν, ψσ + ε− ν with the positive
x1-direction and will be referred to as the β1-, β2-directions, respectively. Thus, the β-direc-
tions are defined in terms of the α-directions and ν, where ν is called the angle of dilatancy
and is to be regarded as a material parameter. In an incompressible material, ν=0 and in this
case the β1-(β2-)direction coincides with the α2-(α1-)direction. Let tβi denote a unit vector in
the βi-direction.

Let P denote a material-point body in Rd and let Q denote a material-point body in an
infinitesimal neighbourhood of P , with Q distinct from P. Let dsQP denote the infinitesimal
position vector of Q relative to P . Let Qαi denote the point of intersection of the αi-direc-
tion through P with the αj -direction through Q, where, here and in the sequel, j = 2 when
i = 1 and j = 1 when i = 2. Consider the material body comprising the set of all material-
point bodies in an infinitesimal neighbourhood of P and also, for fixed but arbitrary Q, con-
sider the material body instantaneously occupying the infinitesimal parallelogram PQα1Qα2Q.

Let dv
Qαi
P denote the velocity of the material point body at Qαi relative to that at P , ds

Qαi
P

denote the position vector of Qαi relative to P and let nαi denote the normal to the αi-direc-
tion (measured anti-clockwise positive from the direction tαi ).

The kinematic model comprises two separate postulates. Firstly, the manner of the instan-
taneous rate of deformation of the material occupying the parallelogram PQα1Qα2Q in terms
of the two adjacent sides PQα1 , PQα2 is specified by prescribing the velocities of the mate-
rial-point bodies at Qα1 and Qα2 relative to P . Secondly, the manner in which the intrinsic
spin gives rise to a velocity of Q relative to P is prescribed. It should be noted that this is a
purely continuum hypothesis, no attempt being made to average the micro-mechanical veloc-
ities and rotations. The model is to be validated, or refuted, by comparison of its predictions
with the properties of real granular materials.

3.1. The proposed kinematic hypothesis

The first postulate is that, relative to the inertial frame F , the velocity of the material-point
body at Qαi relative to P , dv

Qαi

P , is given by

dv
Qαi

P =kβi
∣∣
∣ds

Qαi

P

∣∣
∣ tβi cosφ, (20)
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where kβi is a proportionality factor called the shear strength in the βi-direction and i takes
the values 1 and 2. We shall call Equation (20) a βi-direction dilatant shear on the αi-direc-
tion, since both material-point bodies P and Qαi lie on the same αi-line segment and their
relative velocity is directed in the βi-direction. For an arbitrary point Q in the neighbourhood
of P the velocity of the material-point body at Q relative to that at P due to the two dilatant
shears of Equation (20) is then postulated to be given by their sum

dvQP
∣∣∣S

= dv
Qα1
P +dv

Qα2
P , (21)

relative to the inertial frame F . The α1- and α2-directions are the shear directions and we
shall also refer to them as the slip directions. A fundamental postulate of the model is that
the slip directions coincide with the Coulomb yield directions. It should be carefully noted
that Equations (20) and (21) hold at each instant of time. As the flow proceeds, the vectors
tαi and tβi , i= 1,2, will, in general, vary their orientation in space and, at each instant, the
dilatant shears (20) are defined relative to the current orientations of the tαi , tβi .

The second postulate is that, again relative to the inertial frame F , the velocity of the
material-point body at Q relative to that at P due to the intrinsic spin is the local rigid rota-
tion

dvQP
∣∣∣R

=ω×dsQP . (22)

Thus, the resultant relative velocity of Q relative to P, relative to the inertial frame F , is

dvQP = dvQP
∣∣∣S

+ ω×dsQP
∣∣R , (23)

where ω is evaluated at P .
This is the complete kinematic rule for the local rate of deformation. Thus, for any point

Q in the neighbourhood of P the velocity of the material point body at Q relative to that at
P may be written

dvQP =kβ1

∣∣∣ds
Qα1
P

∣∣∣ tβ1 cosφ+kβ2

∣∣∣ds
Qα2
P

∣∣∣ tβ2 cosφ+ω×dsQP , (24)

relative to F .

3.2. The standard double-shearing kinematic hypothesis

It is instructive to compare the kinematic hypothesis given above, with that of the standard
double-shearing model in terms of the method and notation of this paper. In order to state
the hypothesis, a second frame of reference, this time non-inertial, is required. Let G denote
a frame of reference fixed with respect to the principal axes of stress. Since the principal axes
of stress may rotate, these axes form another spinning triad. Let ωψ denote the spin (angular
velocity) of this triad relative to the inertial frame F . The standard double-shearing model
is also based upon Equations (20) and (21) but now we take these equations to be true rel-
ative to the frame G. Since we require our constitutive equations to be expressed relative to
the inertial frame F , we must add the relative velocity dvQP

∣∣∣F
=ωψ×dsQP due to the rigid spin

ωψ of the frame G relative to F . The complete kinematic hypothesis for the standard double-
shearing model is then

dvQP =dv
Qα1
P +dv

Qα2
P +ωψ×dsQP (25)

where the dv
Qαi

P are again given by Equation (20). We see that the two kinematic hypotheses
are formally identical, and will hence give rise to formally identical equations. In the planar
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case, where the orientation of the principal axes of stress in the plane of deformation is deter-
mined by ψσ , it is clear that ωψ is expressible in terms of the material time derivative of ψσ
(material derivative since the material spins at this rate). Since the double-shearing equations
have been derived from an equation essentially equivalent to Equation (25) in [18], we shall
refrain from deriving them again here.

Now, the assertion that we observe two dilatant shears relative to axes fixed relative to
the principal axes of the Cauchy stress tensor is equivalent to the assumption that, locally,
the material rotates with these axes. This is an unusual, if not unique, assumption in con-
tinuum mechanics. It is, ultimately, this assumption that renders the double-shearing equa-
tions ill-posed, that causes the instability of a time-dependent simple shear, and is the cause
of the discrepancy between the theory and certain experimental data; see [22] and [23]. The
postulate that (20) and (21) are true relative to the frame G implies that the material rotates
locally with the principal axes of stress and this is tantamount to postulating a physical
law. It is this physical law that the authors identify as causing both the theoretical difficul-
ties of ill-posedness and instability and also the discrepancy with the available experimental
data. It is this physical law that the authors seek to replace with another law, the proposed
kinematic hypothesis (25), which does not suffer from these disadvantages.

3.3. The proposed kinematic equations

We see then, that the essential difference between the standard double-shearing kinematic
hypothesis and the one proposed here is that one spin of a triad, the spin of the principal
axes of stress, is replaced by the spin of another triad, the spin of the principal axes of inertia.
The proposed kinematic hypothesis is more in keeping with the double-sliding free-rotating
model due to de Josselin de Jong [2,17]. However, this latter model is indeterminate, consist-
ing, in one formulation, of a system of equations with more unknowns than equations (the
unknown not matched with an equation being ω) and in a second formulation, of a set of
inequalities. The standard double-shearing model represents one method of closing the dou-
ble-sliding free-rotating equations, by prescribing the rotation to coincide with the rotation of
the principal axes of stress. We may view the model presented here as an alternative closure
of the double-sliding free-rotating equations, in which the rotation is identified with the spin
of the material-point body and the system is closed by the equation of rotational motion. We
turn now to the derivation of the equations arising from the proposed kinematic hypothesis
(24). Now the angle between the α1-direction and the normal to the α2-direction is

ψσ + ε− (ψσ − ε+π/2)=φ, (26)

while the angle between the α2-direction and the normal to the α1-direction is

ψσ − ε− (ψσ + ε+π/2)=−φ−π. (27)

Hence the projections of ds
Qαi

P and dsQP onto the direction nαj are equal and may be written
as

∣∣∣ds
Qα1
P

∣
∣∣ cosφ=nα2 ·dsQP ,

∣∣∣ds
Qα2
P

∣
∣∣ cosφ=−nα1 ·dsQP . (28)

Hence

dvQP =kβ1

(
nα2 ·dsQP

)
tβ1 −kβ2

(
nα1 ·dsQP

)
tβ2 +ω×dsQP , (29)

i.e.,

dvQP = [
kβ1

(
tβ1 ⊗nα2

)−kβ2

(
tβ2 ⊗nα1

)+�] ·dsQP , (30)
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where � denotes the anti-symmetric tensor dual to ω. We now suppose that the velocity and
rotational fields are sufficiently smooth in terms of the velocity-gradient tensor

dvQP =� ·ds
Q
P (31)

and so

� =kβ1

(
tβ1 ⊗nα2

)−kβ2

(
tβ2 ⊗nα1

)+�, (32)

where

�=
[

0 −ω
ω 0

]
. (33)

Now,

tβ1 =(cos(ψσ −ε+ν),sin(ψσ −ε+ν)), tβ2 =(cos(ψσ +ε−ν),sin(ψσ +ε−ν)),
nα1 =(−sin(ψσ +ε),cos(ψσ +ε)), nα2 =(−sin(ψσ −ε),cos(ψσ −ε)) (34)

and

tβ1 ⊗nα2 =
[− cos (ψσ − ε+ν) sin (ψσ − ε) cos (ψσ − ε+ν) cos (ψσ − ε)

− sin (ψσ − ε+ν) sin (ψσ − ε) sin (ψσ − ε+ν) cos (ψσ − ε)
]
, (35)

tβ2 ⊗nα1 =
[− cos (ψσ + ε−ν) sin (ψσ + ε) cos (ψσ + ε−ν) cos (ψσ + ε)

− sin (ψσ + ε−ν) sin (ψσ + ε) sin (ψσ + ε−ν) cos (ψσ + ε)
]
. (36)

Hence

∂1v1 =−kβ1 cos (ψσ − ε+ν) sin (ψσ − ε)+kβ2 cos (ψσ + ε−ν) sin (ψσ + ε) ,
∂2v1 =kβ1 cos (ψσ − ε+ν) cos (ψσ − ε)−kβ2 cos (ψσ + ε−ν) cos (ψσ + ε)−ω,
∂1v2 =−kβ1 sin (ψσ − ε+ν) sin (ψσ − ε)+kβ2 sin (ψσ + ε−ν) sin (ψσ + ε)+ω,
∂2v2 =kβ1 sin (ψσ − ε+ν) cos (ψσ − ε)−kβ2 sin (ψσ + ε−ν) cos (ψσ + ε) ,

from which we obtain

∂1v1 + ∂2v2 = (
kβ1 +kβ2

)
sin ν,

∂1v1 − ∂2v2 =−kβ1 sin (2ψσ −2ε+ν)+kβ2 sin (2ψσ +2ε−ν)
=kβ1 cos (2ψσ −φ+ν)+kβ2 cos (2ψσ +φ−ν) , (37)

∂2v1 + ∂1v2 =kβ1 cos (2ψσ −2ε+ν)−kβ2 cos (2ψσ +2ε−ν)
=kβ1 sin (2ψσ −φ+ν)+kβ2 sin (2ψσ +φ−ν) ,

∂2v1 − ∂1v2 = (
kβ1 −kβ2

)
cos ν−2ω.

From Equations (37)ii and (37)iii we may solve for the quantities kβ1 and kβ2 in terms of the
components of the deformation-rate tensor to obtain

(d11 −d22) sin (2ψσ +φ−ν)−2d12 cos (2ψσ +φ−ν)=kβ1 sin 2 (φ−ν) ,
(d11 −d22) sin (2ψσ −φ+ν)−2d12 cos (2ψσ −φ+ν)=−kβ2 sin 2 (φ−ν) , (38)

provided ν �=φ. Subtracting and adding Equations (38) gives
(
kβ1 +kβ2

)
sin 2 (φ−ν)= (d11 −d22) [sin (2ψσ +φ−ν)− sin (2ψσ −φ+ν)]

+2d12 [cos (2ψσ −φ+ν)− cos (2ψσ +φ−ν)]
=2 [(d11 −d22) cos 2ψσ +2d12 sin 2ψσ ] sin (φ−ν) ,
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i.e.,
(
kβ1 +kβ2

)
cos (φ−ν)= (d11 −d22) cos 2ψσ +2d12 sin 2ψσ (39)

and
(
kβ1 −kβ2

)
sin 2 (φ−ν)= (d11 −d22) [sin (2ψσ +φ−ν)+ sin (2ψσ −φ+ν)]

−2d12 [cos (2ψσ +φ−ν)+ cos (2ψσ −φ+ν)]
=2 [(d11 −d22) sin 2ψσ −2d12 cos 2ψσ ] cos (φ−ν) ,

i.e.,
(
kβ1 −kβ2

)
sin (φ−ν)= (d11 −d22) sin 2ψσ −2d12 cos 2ψσ . (40)

Eliminating the quantities kβ1 + kβ2 and kβ1 − kβ2 , between Equations (37)i, (37)iv, (39) and
(40) gives the following pair of equations

d11 +d22 = sin ν
cos (φ−ν) [(d11 −d22) cos 2ψσ +2d12 sin 2ψσ ] , (41)

2 (ω− s21)= cos ν
sin (φ−ν) [(d11 −d22) sin 2ψσ −2d12 cos 2ψσ ] . (42)

Equations (41) and (42) are the required constitutive equations governing the flow. They
are formally identical to the Mehrabadi–Cowin equations [15]; however, the quantity ω is here
interpreted as the intrinsic spin, whereas in the Mehrabadi–Cowin equations it is interpreted
as the material derivative of the quantity ψσ .

Equations (41) and (42) are frame-indifferent. To see this, we demonstrate that they are
unchanged in form under a superposed rigid-body motion. Consider two velocity and intrinsic
spin fields (v1, v2,ω), (v

(1)
1 , v

(1)
2 ,ω(1)), differing only by a rigid-body spin (0,0,�) , measured

anti-clockwise positive, then substituting

v1 =v(1)1 −�x2, v2 =v(1)2 +�x1, ω=ω(1)+�
in Equations (41) and (42) gives the required result.

In the case where φ= ν, the first three of Equations (37) are equivalent to those for an
associated flow rule, see [2],

d11 +d22 = sinφ [(d11 −d22) cos 2ψσ +2d12 sin 2ψσ ] , (43)

(d11 −d22) sin 2ψσ −2d12 cos 2ψσ =0. (44)

Equation (44) is the statement of coaxiality of the stress and deformation-rate tensors. Equa-
tions (41) and (42) also reduce to Equations (43) and (44) when φ=ν. In this case the veloc-
ity field is independent of ω and the quantity kβ1 −kβ2 is indeterminate. Equation (37)iv then
also becomes indeterminate unless we make the additional assumption that kβ1 =kβ2 and then
(37)iv reduces to

ω= s21, (45)

i.e., the intrinsic spin ω is determined by the velocity field and is equal to half the vortic-
ity. The anti-symmetric part of the stress required to ensure satisfaction of this kinematic
constraint is obtained from the equation of rotational motion; Equation (9) and, in this
case, the yield condition (14) must be omitted from the model, since the material must be
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able to sustain the anti-symmetric stress required in order to ensure satisfaction of Equa-
tion (45). In this sense, the model links, inextricably, the concepts of dilatancy, coaxiality,
intrinsic spin and vorticity. Since it is an experimental fact that the magnitude of the angle
of dilatancy is less than the angle of internal friction, it follows necessarily that the model
predicts both non-coaxiality and non-coincidence of the intrinsic spin with half the vortic-
ity, the rotational yield condition limiting the magnitude of the anti-symmetric part of the
stress.

In summary, the model proposed in this section, expressed mathematically in Equations
(41) and (42), may be described in physical terms by saying that the flow consists of a local
intrinsic spin together with simultaneous dilatant shears on two slip directions and, further,
these slip directions coincide with the Coulomb yield directions. The derivation is essentially
algebraic, depending only on the yield condition and is independent of the equations of
motion. When the full equations of the model are considered as a set of first-order partial
differential equations, the question naturally arises as to the relationship, if any, between the
slip and yield directions on the one hand and the spatial characteristic directions for a steady-
state motion, on the other. We show in the next section that for this model there are three
distinct spatial characteristic directions, two of which coincide with the coincident slip and
yield directions, while the remaining characteristic direction corresponds to the direction of
the streamlines.

It turns out that the well- or ill-posedness of this system of first-order partial differential
equations is dependent upon certain properties of the characteristic directions. In this way,
the mechanical and kinematic concepts of yield and slip directions are directly related to the
mathematical concept of characteristic direction, and hence to the well- or ill-posedness of the
model.

4. The steady-state equations are hyperbolic

For steady-state flows in the Ox1x2-plane, the equations governing the model (9), (16–18),
(41), (42) become,

ρv1∂1v1 +ρv2∂2v1 + (1− sinφ cos 2ψσ ) ∂1pσ − sinφ sin 2ψσ∂2pσ

+2qσ sin 2ψσ∂1ψσ −2qσ cos 2ψσ∂2ψσ −ρF1 =0,
(46)

ρv1∂1v2 +ρv2∂2v2 − sinφ sin 2ψσ∂1pσ + (1+ sinφ cos 2ψσ ) ∂2pσ

−2qσ cos 2ψσ∂1ψσ −2qσ sin 2ψσ∂2ψσ −ρF2 =0,
(47)

ρI (v1∂1ω+v2∂2ω)+ρ (v1∂1I +v2∂2I )ω−2rσ −ρG=0, (48)

v1∂1ρ+v2∂2ρ+ρ∂1v1 +ρ∂2v2 =0, (49)

[cos (φ−ν)− sin ν cos 2ψσ ] ∂1v1 − (sin ν sin 2ψσ ) ∂2v1 − (sin ν sin 2ψσ ) ∂1v2

+ [cos (φ−ν)+ sin ν cos 2ψσ ] ∂2v2 =0,
(50)

− (cos ν sin 2ψσ ) ∂1v1 + [sin (φ−ν)+ cos ν cos 2ψσ ] ∂2v1

+ [− sin (φ−ν)+ cos ν cos 2ψσ ] ∂1v2 + (cos ν sin 2ψσ ) ∂2v2 +2ω sin (φ−ν)=0.
(51)

Let

zt = (z1, z2, z3, z4, z5, z6)= (v1, v2,ω, ρ,pσ ,ψσ ) , (52)
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where the superscript t denotes transpose; then Equations (46–51) may be written in matrix
form,

B1 (z) ∂1z +B2 (z) ∂2z + c (z)=0, (53)

where

B1 (z)=






ρv1 0 0 0 b1
15 b

1
16

0 ρv1 0 0 b1
25 b

1
26

0 0 ρIv1 0 0 0

ρ 0 0 v1 0 0

b1
51 b1

52 0 0 0 0

b1
61 b1

62 0 0 0 0






, (54)

B2 (z)=






ρv2 0 0 0 b2
15 b

2
16

0 ρv2 0 0 b2
25 b

2
26

0 0 ρIv2 0 0 0

0 ρ 0 v2 0 0

b2
51 b2

52 0 0 0 0

b2
61 b2

62 0 0 0 0






, (55)

c (z)=






−ρF1

−ρF2

ρİω−2rσ −ρG
0
0

2ω sin (φ−ν)






, (56)

where the superposed dot denotes the material derivative and where

b1
15 =1− sinφ cos 2ψσ , b1

16 =2qσ sin 2ψσ ,

b1
25 =− sinφ sin 2ψσ , b1

26 =−2qσ cos 2ψσ ,

b1
51 = cos (φ−ν)− sin ν cos 2ψσ , b1

52 =− sin ν sin 2ψσ ,

b1
61 =− cos ν sin 2ψσ , b1

62 =− sin (φ−ν)+ cos ν cos 2ψσ ,

(57)

b2
15 =− sinφ sin 2ψσ , b2

16 =−2qσ cos 2ψσ ,

b2
25 =1+ sinφ cos 2ψσ , b2

26 =−2qσ sin 2ψσ ,

b2
51 =− sin ν sin 2ψσ , b2

52 = cos (φ−ν)+ sin ν cos 2ψσ ,

b2
61 = sin (φ−ν)+ cos ν cos 2ψσ b2

62 = cos ν sin 2ψσ .

(58)

Let u=u (x1, x2)= c, where c is a constant, denote a curve in the Ox1x2-plane on which the
solution z is known and define

ξ1 = ∂1u, ξ2 = ∂2u. (59)

Then z = z (u)= z (x1, x2) and, letting duz denote differentiation with respect to u, we have

∂1z =duz∂1u= ξ1duz, ∂2z =duz∂2u= ξ2duz. (60)
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Since duz =0 on the curve u (x1, x2)= c, we may regard duz as an exterior derivative. Let

E=B1ξ1 +B2ξ2; (61)

then

E=






ρe 0 0 0 e15 e16

0 ρe 0 0 e25 e26

0 0 ρIe 0 0 0
ρξ1 ρξ2 0 e 0 0
e51 e52 0 0 0 0
e61 e62 0 0 0 0






, (62)

where

e=v1ξ1 +v2ξ2, eij =b1
ij ξ1 +b2

ij ξ2. (63)

Using Equations (60) and (61), we may write Equation (53) as

Eduz + c =0. (64)

This is a set of equations for the exterior derivative duz which enables the solution z to be
continued into the Ox1x2-plane away from the curve u (x1, x2)=c. Equation (64) fails to have
a solution, i.e., z cannot be continued off the curve u (x1, x2)= c, if

detE=0. (65)

This is the condition that u (x1, x2)= c be a characteristic curve. Expanding the determinant
gives

detE=ρIe2 (e26e15 − e16e25) (e51e62 − e61e52) , (66)

where

e26e15 − e16e25 =−2qσA(ξ1, ξ2) , (67)

e51e62 − e61e52 = cos (φ−2ν)A (ξ1, ξ2) (68)

and

A=A(ξ1, ξ2)= (cos 2ψσ − sinφ) ξ2
1 +2 sin 2ψσ ξ1ξ2 − (cos 2ψσ + sinφ) ξ2

2 . (69)

Thus,

detE=−2qσρI cos (φ−2ν) e2A2 (70)

and we note that the contributions to detE from the stress and kinematic equations uncouple
and so we may refer to the two pairs of characteristic curves arising from Equations (67) and
(68) as the stress and velocity characteristic curves, respectively. Further, their contributions
are identical up to a multiplicative factor, and hence these curves coincide. All the character-
istic curves are given by the condition (65) and hence one of the following must hold

v1ξ1 +v2ξ2 =0, (71)

(cos 2ψσ − sinφ) ξ2
1 + (2 sin 2ψσ ) ξ1ξ2 − (cos 2ψσ + sinφ) ξ2

2 =0. (72)

Thus, the system has
1. a repeated characteristic linear in ξ1, ξ2,
2. a repeated pair of characteristic curves, quadratic in ξ1 and ξ2,
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and, the system is hyperbolic in the sense that all characteristic directions are real, albeit
degenerate in that each characteristic is repeated. Let u= u (x1, x2)= c be a characteristic
curve, then the condition

du= ξ1dx1 + ξ2dx2 =0 (73)

gives

dx2

dx1
=−ξ1

ξ2
=mi , (74)

say, where i takes the values 1,2,3. Hence, the root of the linear equation may be written m3 =
v2/v1, and the characteristic direction determined by this equation corresponds to the stream-
lines of the flow, while the roots of the quadratic equation

(cos 2ψσ − sinφ)m2
i − (2 sin 2ψσ )mi − (cos 2ψσ + sinφ)=0 (75)

determine the characteristic directions in the Ox1x2 plane given by

m1 = tan (ψσ + ε) , m2 = tan (ψσ − ε) . (76)

These are the α1- and α2-directions defined after Equation (19) and the angle between them is
1
2π+φ. Thus, the characteristic directions of the system of governing partial differential equa-
tions coincide with the Coulomb yield directions and the slip directions. In fact, for equations
of the form considered here, the condition that the stress and velocity characteristic directions
coincide is a necessary, but not sufficient condition, for the linear well-posedness of the model.
The plastic-potential model for incompressible materials does not have coincident stress and
velocity characteristics and is ill-posed. On the other hand, the incompressible double-shear-
ing model does have coincident stress and velocity characteristics but is also ill-posed. In
the next two sections we demonstrate that the model proposed here, which is closely related
to both the plastic potential and to the double-shearing models does admit a class of flows
for which the model is linearly well-posed, namely the class of flows for an incompressible
material.

5. Linearisation of the equations in the incompressible case

We now begin the proof that the model contains a domain of well-posedness. The calculation
for the full model is extremely lengthy and requires specification of the evolution of the angle
of dilatancy ν, since the standard assumption of perfect plasticity in which ν is considered
constant is not adequate here. The total amount of dilatancy or compressibility must be lim-
ited, for otherwise the model becomes invalid, either as the density reduces below the level
at which the grains can remain in contact, or as it increases above the level which requires
grain overlap. Unlimited dilatancy, in particular, may give rise to a mathematical ill-posed-
ness, in this case valid and caused by a physical instability, namely the phase change from
solid or liquid-like behaviour to gaseous-like behaviour. The model proposed here, of course,
becomes invalid for such dilute flows. Consequently, we consider the special case of incom-
pressible flows and put ν = 0 and omit ρ from the set of dependent variables. In this case,
Equation (41) becomes identical with the continuity equation for an incompressible material
and so we omit the latter. The full time-dependent equations for incompressible flows will be
written as

A∂tz +B1 (z) ∂1z +B2 (z) ∂2z + c (z)=0, (77)
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where

A=






ρ 0 0 0 0
0 ρ 0 0 0
0 0 ρI 0 0
0 0 0 0 0
0 0 0 0 0






(78)

and B1,B2 are as in the previous section but with the fourth row and column omitted. We
now linearise this set of equations. Let Zt = (Z1,Z2,Z3,Z4,Z5)= (V1, V2,�,Pσ ,�σ ) denote a
known solution of Equation (77) and consider a perturbation z′ of Z such that

z =Z+ z′. (79)

Also let Qσ , Rσ denote the known qσ , rσ fields for this solution, q ′
σ , r ′σ the corresponding

perturbations of the qσ , rσ fields, then

v1 =V1 +v′
1, v2 =V2 +v′

2, ω=�+ω′, pσ =Pσ +p′
σ ,

ψσ =�σ +ψ ′
σ , qσ =Qσ +q ′

σ , rσ =Rσ + r ′σ , (80)

Finally, let Dij , �ij denote the components of the deformation-rate and stress tensors in the
underlying unperturbed solution. Substituting Equation (79) in Equation (77), linearizing the
resulting equations and using the fact that Z is a solution of (77), we have

A∂tz′ +B1 (Z) ∂1z′ +B2 (Z) ∂2z′ +C (Z) z′ =0, (81)

where

C (Z)=






c11 c12 0 c14 c15

c21 c22 0 c24 c25

c31 c32 c33 0 0
0 0 0 0 0
0 0 c53 0 c55






(82)

and

c11 =ρ0∂1V1, c12 =ρ0∂2V1,

c14 =2 sinφ (∂1�σ sin 2�σ − ∂2�σ cos 2�σ ) ,

c15 =2 [sinφ (∂1Pσ sin 2�σ − ∂2Pσ cos 2�σ )

+2Qσ (∂1�σ cos 2�σ + ∂2�σ sin 2�σ )] ,
c21 =ρ0∂1V2, c22 =ρ0∂2V2,

c24 =−2 sinφ (∂1�σ cos 2�σ + ∂2�σ sin 2�σ ) ,

c25 =−2 [sinφ (∂1Pσ cos 2�σ + ∂2Pσ sin 2�σ )
−2Qσ (∂1�σ sin 2�σ − ∂2�σ cos 2�σ )] ,

c31 =ρI∂1�, c32 =ρI∂2�, c33 =ρ (∂t I +V1∂1I +V2∂2I ) ,
c53 =2 sinφ, c55 =−2QD cos 2 (�D −��) ,

(83)

where

QD = 1
2

[
(D11 −D22)

2 +4D2
12

]1/2
, (84)

tan 2�D = 2D12

D11 −D22
, (85)
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i.e., QD and �D are the maximum shear-rate and angle that the greater principal direction
of the deformation-rate tensor makes with the x1-axis, in the underlying unperturbed field,
respectively. Let the entries of B1 (Z), B2 (Z) be denoted by B1

ij , B2
ij , respectively; then, since

ν= 0, and renumbering the rows and columns as necessary, we obtain from Equations (57),
(58)

B1
14 =1− sinφ cos 2��, B1

15 =2Q� sin 2��,

B1
24 =− sinφ sin 2�σ , B1

25 =−2Q� cos 2��,

B1
41 =1, B1

42 =0,

B1
51 =− sin 2��, B1

52 =− sinφ+ cos 2��,

B2
14 =− sinφ sin 2��, B2

15 =−2Q� cos 2��,

B2
24 =1+ sinφ cos 2��, B2

25 =−2Q� sin 2��,

B2
41 =0, B2

42 =1,

B2
51 = sinφ, B2

52 = sin 2�� ,

(86)

where

Q� = 1
2

[
(�11 −�22)

2 +4�2
12

]1/2
, (87)

tan 2�� = �21 +�12

�11 −�22
.

6. Method of frozen coefficients for the incompressible case

We now apply the method of frozen coefficients to show that the model is linearly well-posed
for incompressible flows. Consider a perturbation z′ of the original solution Z, with initial
time t0 in the neighbourhood of the point x0 in which z′ is a normal mode solution of the
linearised Equations (81), i.e.,

z′= z0 exp [ς (t− t0)+ ik · (x −x0)] (88)

where

zt
0 =

(
v0

1, v
0
2,ω

0, p0
σ ,ψ

0
σ

)
(89)

denotes the initial amplitude of the perturbation, ς denotes the (possibly complex) frequency,
i=√−1, k= (k1, k2) the (real) vector wave-number, x= (x1, x2) , t0 denotes the initial time and
x0 denotes a fixed spatial point in R. Now,

∂tz′ =ςz′, ∂1z′ = ik1z′, ∂2z′ = ik2z′, (90)

and substituting in Equation (81) gives the homogeneous set of algebraic linear equations for
z0,

[Aς +E(k,Z)] z0 =0, (91)
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where E denotes the matrix

E(k,Z)= ik1B1 (Z)+ ik2B2 (Z)+C (Z) (92)

=






e11 c12 0 e14 e15

c21 e22 0 e24 e25

c31 c32 e33 0 0
e41 e42 0 0 0
e51 e52 c53 0 c55






(93)

and where

e11 =ρ0e+ c11, e22 =ρ0e+ c22, e33 =ρ0Ie+ c33, (94)

e= ik1V1 + ik2V2, (95)

eij = ik1B
1
ij + ik2B

2
ij + cij , i=1,2, j =4,5

eij = ik1B
1
ij + ik2B

2
ij , i=4,5, j =1,2.

(96)

Thus, each eij is linear in ik, while cij is independent of k. Recall that the symbol E was used
for a related, but different, matrix in the section demonstrating hyperbolicity of the steady
state equations. The similarities and differences between the two matrices are worth noting.
The condition that Equation (91) gives rise to non-trivial solutions for z0, is

det [Aς +E(k,Z)]=0. (97)

Now, the matrix A is singular and Equation (91) represents a generalised eigenvalue prob-
lem for ς ,1 and care must be taken to ensure that all possibilities for non-trivial solutions
are found. Accordingly, we first reduce Equation (91) to a standard eigenvalue problem by
using the fourth and fifth equations to eliminate the unknowns p0

σ ,ψ
0
σ . However, it should be

pointed out that a direct expansion of the determinant in Equation (97) gives the same results
concerning well-posedness as those given below, and, moreover, the calculation is shorter.
Now, the fourth row of Equation (91) states

e41v
0
1 + e42v

0
2 =0. (98)

Multiplying the first equation by e41, the second by e42 and adding gives

(e11e41 + e42c21) v
0
1 + (e41c12 + e42e22) v

0
2

+ (e41e14 + e42e24)p
0
σ + (e41e15 + e42e25)ψ

0
σ =0. (99)

The fifth row of Equation (91) states

e51v
0
1 + e52v

0
2 + c53ω

0 + c55ψ
0
σ =0.

Multiplying the first equation by e51, the second by e52 and adding gives

(e11e51 + c21e52) v
0
1 + (c12e51 + e22e52) v

0
2 −ρ0ςc53ω

0

+ (e15e51 + e25e52)p
0
σ + (e15e51 + e25e52 − c55ρ0ς)ψ

0
σ =0. (100)

1One of the authors (DH) is indebted for remarks by Prof. D.G. Schaeffer on this point.
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Equations (99) and (100) may be solved for p0
σ , ψ

0
σ ,

p0
σ = (f41 +g41ρ0ς) v

0
1 + (f42 +g42ρ0ς) v

0
2 +g43ρ0ςω

0

f +gρ0ς
, (101)

ψ0
σ = f51v

0
1 +f52v

0
2 +g53ρ0ςω

0

f +gρ0ς
, (102)

where

f = (e14e25 − e15e24) (e42e51 − e41e52) , g= c55 (e41e14 + e42e24) (103)

and these are the key quantities in determining the linear well-posedness of the system. Also

f41 = (c21e15 − e11e25) (e42e51 − e41e52) ,

f42 = (e15e22 − e25c12) (e42e51 − e41e52) ,

f51 = (e15c21 − e25e11) (e41e52 − e42e51) ,

f52 = (e14e22 − e24c12) (e41e52 − e42e51) ,

(104)

g41 =−c55 (e11e41 + e42c21) , g42 =−c55 (e41c12 + e42e22) ,

g43 = c53 (e41e14 + e42e24) , g43 =−c53 (e41e14 + e42e24) .
(105)

Elimination of p0
σ ,ψ

0
σ from the equations and defining z0

r = (
v0

1, v
0
2,ω

0
)

reduces the system of
equations to




gρ2

0ς
2 +h11ρ0ς + i11 h12ρ0ς + i12 h13ρ0ς

h21ρ0ς + i21 gρ2
0ς

2 +h22ρ0ς + i22 h23ρ0ς

c31 c32 ρ0Iς + e33








v0

1
v0

2
ω0



=



0
0
0



 , (106)

where

h11 =f + e11g+ e15g41, h12 = c12g+ e15g42,

h13 = e15g43 + e16g53, h21 = c21g+ e25g41,

h22 =f + e22g+ e25g42, h23 = e25g43 + e26g53,

i11 = e11f + e15f41 + e16f51, i12 = c12f + e15f42 + e16f52,

i21 = c21f + e26f51 + e25f41, i22 = e22f + e25f42 + e26f52.

(107)

A direct calculation shows that

i11 = i12 = i21 = i22 =0 (108)

and so the equations reduce to

F(ς,k,Z)z0
r =0, (109)

where

F(ς,k,Z)=



gρ2

0ς
2 +h11ρ0ς h12ρ0ς h13ρ0ς

h21ρ0ς gρ2
0ς

2 +h22ρ0ς h23ρ0ς

c31 c32 ρ0Iς + e33



 . (110)

This is now a standard eigenvalue problem and Equation (109) has non-trivial solutions for
z0
r provided

detF(ς,k,Z)=0 (111)
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and equation (111), the dispersion relation for the model, determines ς in terms of k and Z,

ς =ς (k,Z) . (112)

Bearing in mind Equation (88), the growth rate of the model, for given k, Z is defined to be
the quantity Re (ς) where Re denotes real part. It is convenient to define the wave number
tensor K by

K =k ⊗k =
[
k2

1 k1k2

k1k2 k2
2

]
(113)

with invariant k, where

k=
√
k2

1 +k2
2, (114)

and the wave tensor angle ψK by

tanψK =k2/k1. (115)

Then

k1 =k cosψK, k2 =k sinψK . (116)

For k �=0 define

ki =ki/k. (117)

The relations

sin 2ψK = 2k1k2

k2
1 +k2

2

=2k1k2, (118)

cos 2ψK = k2
1 −k2

2

k2
1 +k2

2

=k2
1 −k2

2. (119)

will be particularly useful. Then

detF(ς, k,ψK,Z)=0 (120)

and expanding the dispersion relation (120) using Equation (110) gives the following quintic
equation in ς

A3 (ρ0ς)
5 +A2 (ρ0ς)

4 +A1 (ρ0ς)
3 +A0 (ρ0ς)

2 =0, (121)

in which the coefficients Ai =Ai (k,ψK,Z) are

A3 = Ig2,

A2 =g [e33g+ I (h11 +h22)] ,

A1 = I (h11h22 −h12h21)+ e33g (h11 +h22)−g (c31h13 + c32h23) ,

A0 = e33 (h11h22 −h12h21)+ c32 (h13h21 −h11h23)+ c31 (h12h23 −h13h22) ,

(122)
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where, from Equations (107)

h11 +h22 =2f + c55 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)] , (123)

h11h22 −h12h21 =f 2 + c55 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]f, (124)

c31h13 + c32h23 = c53 (e14e25 − e15e24) (c31e42 − c32e41) , (125)

c32 (h13h21 −h11h23)+ c31 (h12h23 −h13h22)

= c53 (c32b41 − c31b42) (e14e25 − e15e24) f.
(126)

Thus,

A2 =2Ifg+ e33g
2 + Ic55 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]g, (127)

A1 = If 2 +{Ic55 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]+2e33g}f
+{c55e33 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]

−c53 (c31e42 − c32e41) (e14e25 − e15e24)}g,
(128)

A0 ={e33 {f + c55 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]}
+c53 (c32e41 − c31e42) (e14e25 − e15e24)}f. (129)

Now, ς =ς (k,ψK,Z) and we define

ς∞ =ς∞ (ψK,Z)= lim
k→∞

ς (k,ψK,Z) . (130)

The quantity Re (ς∞) is called the asymptotic growth rate of the model. The model is called
linearly well-posed if Re (ς∞) is finite for all values of ψK . On the other hand, it is called lin-
early ill-posed if Re (ς∞)→+∞ as k →∞ for some value of ψK . Thus, a well-posed model
may admit unstable solutions but the growth rate ς must be bounded in its dependence on
k. But then, in a linearly ill-posed model, ς is unbounded as a function of k, so, the shorter
the wavelength of the perturbation, the larger its growth rate, pointing to a particularly strong
kind of instability. Of course, these growing perturbations are solutions of only the linearised
equations of the model, which become invalid as the perturbations grow. In the full model,
the strength of the growth of perturbations may be mitigated by the nonlinearities. However,
for the quasi-linear models considered here, a (nonlinearly) ill-posed model cannot give rise
to a well-posed linearisation, and a linearly ill-posed model cannot be the linearisation of a
(nonlinearly) well-posed model; see Strang [24]. It is in this sense that the linearised analysis
presented here gives a valid deduction for the full quasi-linear model. Our goal is to evaluate
Re (ς∞) for all values of ψK and this we will do by finding the asymptotic growth rate of the
roots of Equation (121).

7. Linear well-posedness for normal directions

From Equation (121) either ς = 0 is a repeated root, corresponding to a neutral affect on
growth or decay, or

A3 (ρ0ς)
3 +A2 (ρ0ς)

2 +A1ρ0ς +A0 =0. (131)

By inspection, from Equations (122)1, (127–129), we have

A3 (k,Z)=O
(
k4

)
, A2 (k,Z)=O

(
k6

)
,

A1 (k,Z)=O
(
k8

)
, A0 (k,Z)=O

(
k9

)
.

(132)
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Let the roots of the dispersion relation, Equation (131), be denoted by α,β, γ ; then

α+β+γ =O
(
k2

)
, αβ+αγ +βγ =O

(
k4

)
, αβγ =O

(
k5

)
. (133)

Hence, there are two roots O
(
k2

)
and one root O (k) . We now investigate the asymptotic

behaviour of the roots α, β, γ .

7.1. The roots O
(
k2

)

To investigate the O
(
k2

)
roots, we define

ς̄ = ς̄ (k,ψK,Z)=ς/k2, ēij = eij /k, cij = cij /k. (134)

Also let

f̄ = (ē14ē25 − ē15ē24) (ē42ē51 − ē41ē52) , ḡ= c55 (ē41ē14 + ē42ē24) . (135)

We now consider the behaviour of Re (ς̄) in the limit k→∞ with ψK held constant. Let ς̄∞ =
limk→∞ ς̄ then Re (ς̄∞) determines the asymptotic growth rate of the model since

ς̄∞ = lim
k→∞

ς∞/k2. (136)

Clearly, for a O
(
k2

)
root, the model is linearly well-posed if, and only if, ς̄∞ ≤0. We re-scale

the dispersion relation to render the O
(
k2

)
root finite in the limit k→∞ and use the scaled

dispersion relation to obtain the value of Re (ς∞). Dividing Equation (131) by k10, we may
write the dispersion relation as follows:

Ā3 (ρ0ς̄ )
3 + Ā2 (ρ0ς̄ )

2 + Ā1ρ0ς̄ + Ā0/k=0, (137)

where Ā3 = Ā3 (ψK,Z) , all other Āi = Āi (k,ψK,Z) and

Ā3 = I ḡ2,

Ā2 =2I f̄ ḡ+ 1
k
ē33ḡ

2 + I c̄55 [ē42 (ē11ē24 − ē14c̄21)+ ē41 (ē22ē14 − ē24c̄12)] ḡ,

Ā1 = I f̄ 2 +
{
I c̄55 [ē52 (ē11ē24 − ē14c̄21)+ ē41 (ē22ē14 − ē24c̄12)]+ 2

k
ē33ḡ

}
f̄

+ 1
k
{c̄55ē33 [ē42 (ē11ē24 − ē14c̄21)+ ē41 (ē22ē14 − ē25c̄12)]

−c̄53 (c̄31ē42 − c̄32ē41) (ē14ē25 − ē15ē24)} ḡ,
Ā0 ={

ē33
{
f̄ + c̄55 [ē42 (ē11ē24 − ē14c̄21)+ ē41 (ē22ē14 − ē24c̄12)]

}

+c̄53 (c̄32ē41 − c̄31ē42) (ē14ē25 − ē15ē24)} f̄ .

(138)

Let k→∞ with ψK held constant and define

ē∞ij = lim
k→∞

eij /k, (139)

f̄∞ = (
ē∞14 ē

∞
25 − ē∞15 ē24

) (
ē∞42 ē

∞
51 − ē∞41 ē

∞
52

)
, ḡ∞ = c55

(
ē∞41 ē

∞
14 + ē∞42 ē

∞
24

)
, (140)

noting that

lim
k→∞

cij =0. (141)

Then the dispersion relation reduces to the following cubic equation, the first reduced asymp-
totic dispersion relation for ς̄∞,

Ā∞
3 (ρ0ς̄∞)3 + Ā∞

2 (ρ0ς̄∞)2 + Ā∞
1 ρ0ς̄∞ =0, (142)
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where

Ā∞
i = Ā∞

i (ψK,Z)= lim
k→∞

Āi (143)

and

Ā∞
3 = I ḡ2∞, Ā∞

2 =2I f̄∞ḡ∞, Ā∞
1 = I f̄ 2∞, Ā∞

0 = ē33f̄
2∞. (144)

From Equation (142), either ς̄∞ = 0 (which corresponds to the O(k) bounded root of Equa-
tion (131)) or

(
ρ0ḡ∞ς̄∞ + f̄∞

)2 =0, (145)

i.e.,

ς̄∞ =−
(
ē∞14 ē

∞
25 − ē∞15 ē24

) (
ē∞42 ē

∞
51 − ē∞41 ē

∞
52

)

ρ0c55
(
ē∞41 ē

∞
14 + ē∞42 ē

∞
24

) . (146)

Now,

ē∞ij = ik̄1B
1
ij + ik̄2B

2
ij , (147)

and hence, on using Equations (147), (86), (118), (119) and (19), we have

ē∞14 ē
∞
25 − ē∞15 ē24 =2Q� [cos 2 (�� −ψK)− sinφ] ,

=4Q� cos (�� + ε−ψK) cos (�� − ε−ψK) ,

ē∞42 ē
∞
51 − ē∞41 ē

∞
52 = [cos 2 (�� −ψK)− sinφ] , (148)

=2 cos (�� + ε−ψK) cos (�� − ε−ψK) ,
ē∞41 ē

∞
14 + ē∞42 ē

∞
24 =−1+ sinφ cos 2 (�� −ψK) .

Thus, using Equation (83)ix yields

ς̄∞ =− Q� [cos 2 (�� −ψK)− sinφ]2

ρ0QD cos 2 (�D −��) [1− sinφ cos 2 (�� −ψK)] (149)

=−
4Q� sin2

(
�� −ψK + 1

4π − 1
2φ

)
sin2

(
�� −ψK − 1

4π + 1
2φ

)2

ρ0QD cos 2 (�D −��) [1− sinφ cos 2 (�� −ψK)] . (150)

Now, for all values of ψK

1− sinφ cos 2 (�� −ψK)>0, (151)

provided 0<φ < 1
2π and so ς̄∞ ≤ 0 provided the following bound on non-coaxiality in the

underlying prescribed solution is satisfied:

−π/4<�D −�� <π/4. (152)

We note from its derivation, that the asymptotic equation (142) fails to be valid when

(ē14ē25 − ē15ē24) (ē42ē51 − ē41ē52)=0, (153)

since terms in Equation (131) which have been omitted from (142) on the condition that they
may be neglected in comparison with the term on the left-hand side of Equation (153) can no
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longer be so when this term is identically zero. Equation (153) holds when ψK takes one of
the values ψ1

K, ψ
2
K, where

ψ1
K =�� −π/4−φ/2±π/2=�� − ε±π/2, (154)

ψ2
K =�� +π/4+φ/2±π/2=�� + ε±π/2,

i.e., the directions normal to the coincident stress and velocity characteristic directions of the
underlying prescribed solution. A degenerate direction in the (k1,k2)-plane corresponds to one
of the values ψ1

K, ψ
2
K of ψK given by Equation (154). All other directions in the (k1,k2)-plane

are called normal directions. Thus, we have shown that the two roots O(k2) give a well-posed
contribution in the normal directions.

7.2. The root O(k)

We now consider the remaining root of Equation (131) subject to Equations (132). To investi-
gate this root we again re-scale the dispersion relation, this time to render the O(k) root finite
in the limit k→∞ and use the scaled dispersion relation to obtain the value of ς∞. We now
divide Equation (131) by k9 to obtain the dispersion relation

1
k2
Ā3 (ρ0ς̄ )

3 + 1
k
Ā2 (ρ0ς̄ )

2 + Ā1ρ0ς̄ + Ā0 =0, (155)

where the Āi are given by Equation (138). Let k→∞ with ψK held constant then the dis-
persion relation reduces to the following linear equation, the second reduced asymptotic disper-
sion relation for ς̄∞,

Ā∞
1 ρ0ς̄∞ + Ā∞

0 =0, (156)

where the Ā∞
i are given by Equation (144). Thus

ς̄∞ =−ē∞, (157)

where

ē∞ = i (V1 cosψk +V2 sinψk) , (158)

which is purely imaginary, Re (ς̄∞)= 0, and hence this root cannot contribute to ill-posed-
ness. Again we see that the reduced dispersion relation ceases to be valid in a direction per-
pendicular to the corresponding characteristic, in this case the streamline characteristic, i.e.,
the second reduced asymptotic dispersion relation ceases to be valid in the direction

ψ3
K = tan−1 (−V1/V2) . (159)

7.3. Degenerate directions

We now turn to the values of ψK that correspond to the degenerate directions, ψ1
K,ψ

2
K , and

also to the direction ψ3
K, i.e., the directions normal to each of the three distinct characteristic

directions. As stated above, the asymptotic equations (142) break down for ψk =ψ1
K,ψ

2
K . In

this case

k1 =±k sin (�σ ± ε) , k2 =±k cos (�σ ± ε) , (160)

and we now derive asymptotic dispersion equations applicable to the degenerate directions. It
seems intuitively clear that in the degenerate directions the terms which give rise to the roots
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O(k2) are absent, thus leaving only the root O(k) to determine the growth rate. We verify here
that this is indeed the case. Now, let ψK take one of the values given by Equations (154); then

ē∞14 ē
∞
25 − ē∞15 ē24 = ē∞42 ē

∞
51 − ē∞41 ē

∞
52 =0, (161)

ē∞41 ē
∞
14 + ē∞42 ē

∞
24 =− cos2 φ.

since cos 2 (�σ −ψK)= sinφ. Also, Equations (122)1, (127–129) reduce to

A3 = Ig2

A2 = e33g
2 + Ic55 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]g,

A1 ={c55e33 [e42 (e11e24 − e14c21)+ e41 (e22e14 − e24c12)]
−c53 (c31e42 − c32e41) (e14e25 − e15e24)}g,

A0 =0.

(162)

Hence
[
A3 (ρ0ς)

2 +A2 (ρ0ς)+A1

]
(ρ0ς)

3 =0, (163)

i.e., either ς =0, a triple root, or

A3 (ρ0ς)
2 +A2 (ρ0ς)+A1 =0, (164)

where

A3 =O
(
k4

)
, A2 =O

(
k5

)
, A1 =O

(
k6

)
. (165)

Denoting the roots of the quadratic equation (164) by α,β,

α+β=O (k) , αβ=O
(
k2

)
(166)

i.e., there are two roots O (k) . Defining

ς̄ =ς/k (167)

and dividing the equation by k6 gives

Ā3 (ρ0ς̄ )
2 + Ā2 (ρ0ς̄ )+ Ā1 =0, (168)

where

Ā2 = ē33ḡ
2 + Ic55 [ē42 (ē11ē24 − ē14c̄21)+ ē41 (ē22ē14 − ē24c̄12)] ḡ,

Ā1 ={c55ē33 [ē42 (ē11ē24 − ē14c̄21)+ ē41 (ē22ē14 − ē24c̄12)]
−c53 (c̄31ē42 − c̄32ē41) (ē14ē25 − ē15ē24)} ḡ.

(169)

Letting k→∞ gives

Ā∞
3 = I ḡ2

∞, Ā∞
2 =2ρ0I ē∞ḡ2

∞, Ā∞
1 = Iρ2

0 ē
2
∞ḡ

2
∞

and the third reduced asymptotic dispersion relation is

ς̄2
∞ +2ē∞ς̄∞ + ē2

∞ =0 (170)

with repeated root

ς̄ =−ē∞ =−i
(
V1 cosψjK +V2 sinψjK

)
,
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where j may take the values 1, 2 and again this purely imaginary root cannot cause ill-po-
sedness.

Finally, we turn to the direction, ψ3
K = tan−1 (−V1/V2) . If ψ3

K does not coincide with one
of ψ1

K,ψ
2
K then ψ3

K is a normal direction and need not be considered further. If ψ3
K does

coincide with one of ψ1
K,ψ

2
K then both f = e=0, and so Equations (122)i, (127–129) reduce

further to

A3 = Ig2, A2 = c33g
2 + Ic55 [e42 (c11e24 − e14c21)+ e41 (c22e14 − e24c12)]g,

A1 = c55c33 [e42 (c11e24 − e14c21)+ e41 (c22e14 − e24c12)]g, A0 =0,
(171)

but then

A3 =A2 =A1 =O(k4) (172)

and all the roots are bounded and hence cannot contribute to ill-posedness.

8. Conclusions and discussion

We have presented a rigid/perfectly plastic model for the flow of granular materials which is
closely related to the double-shearing model, the double-sliding free-rotating model and the
associated flow rule. The two essential results of the paper are that (a) the model has been
shown to be hyperbolic for steady-state flows in two space dimensions, irrespective of whether
the flow is quasi-static or dynamic, and (b) incompressible flows are well-posed.

We make some further remarks concerning the significance of the model and its properties.
One way to regard the model is that the double-sliding free-rotating model is indeterminate,
containing one more unknown (ω) than equations. The double-shearing model closes this set
of equations by taking ω to be ψ̇σ , the material derivative of the angle, that the algebraically
greater principal stress direction makes with the x1-axis. The present model is an alternative
method of closure, in which the model is augmented by a further unknown (rσ ) and further
equations (the equation of rotational motion and the rotational yield condition).

For the double-shearing model, many of the analytic solutions that have been found are
such that the quantity ψ̇σ , is zero. All of these solutions are also solutions of the present
model in which the intrinsic spin ω is zero. It may be anticipated that these solutions will
be of use in applications of the present model, and work is currently in progress on this.
The model has been constructed purposefully to demonstrate the existence of a model which
contains sufficient mechanical and kinematic properties to describe the major bulk properties
of granular materials, which also contains a domain of well-posedness and which retains the
property of remaining hyperbolic in the inertial regime. This is in contrast to both the dou-
ble-shearing model and the plastic-potential model when a non-associated flow rule is used.

Hyperbolicity in both the quasi-static and inertial regimes is a desirable property. In a real
granular material, the inertial terms can never be identically zero, even though they may be
very small. A model which changes type from hyperbolic to elliptic in the presence of inertia
has the following difficulty. Solutions for a hyperbolic model need not be smooth, discontinu-
ities in the field variables or their spatial derivatives are very common, indeed one of the stan-
dard methods for obtaining solutions to the quasi-static stress field involves patching together
solutions which are continuous in the stresses, but in which the spatial derivatives tangential
to one family of characteristics, are discontinuous. Solutions to elliptic models exhibit much
more smoothness, typically, they must be analytic functions. So for a model which changes
type from hyperbolic to elliptic, it appears that solutions in the inertial regime must be of a
completely different character to solutions in the quasi-static regime, even in the case where
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the inertial terms are arbitrarily small. This difference also holds true for boundary condi-
tions. Solutions of hyperbolic models often exhibit discontinuities in tangential components
of velocity and this describes well the slipping of a granular material over a bounding sur-
face, or an internal slip surface. Elliptic models, on the other hand, cannot readily incorporate
such discontinuities due to the required smoothness of the solution. Hence an elliptic model
must resort to velocity boundary conditions such as the no-slip condition. However, it may
be argued that the no-slip condition can never be assured to apply to granular materials. If
a bounding surface be perfectly rough, so that no relative velocity is allowed (this does not,
of course, preclude rolling) between the material comprising the boundary and the granular
material itself, then the layer of grains in direct contact with the boundary will surely stick
to it, but the next layer of grains further out may indeed slip on the inner layer. In this case
it is often said that the material slips on itself. Since, in a continuum model, the grain size
may be taken as zero, this slip line cannot be distinguished from the boundary itself and a
tangential velocity discontinuity at the boundary is required.
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